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Abstract : both enantiomers of 2,5-hexane diol and 2.6~heptane diol have been 
prepared respectively by stereoselective reduction of optically active 
diketodisulfmides and ketosulfbxides. 

OpticaIly active 2,5&methylpynxMine has been employed frequently as a chiral auxiliary of C2 

symmetry in enantioselective reactions. (RR) and (S,S)-2,5-hexane diols ’ are the usual precursors of 

2,5-dimetl1ylpyrrolidine ‘. Similarly, (r/R) and (S,S)-2,6-heptane dials can be considered as 

precursors of optically active 2,64%wthylpijberid. 
We report in this paper &e enantioselective synthesis of both emmtiomers of 2.~hexane diol = 1 

and 2,6-heptanc diol ,2 W on the stereoselective reduction of p-ketosulfoxides 3. 

The C2 symmetry of the dial 1 allows their synthesis by reduc$on of the corresponding 

-xi& 3 either with DIBAL or EnBr$DIBAL 4. 

tR,R)-Diketo<tisulfoxide 3 was readily prcpan& tbm methyl sucbatc and (+)-(R) methyl p- 

tolylsursmride ’ (scheme I). DIBAL reduction of 3 gave as expected only one diasm, 5, as 

shownbyitsNMRspectnrmhavingonlyonesetofsignalqparticularlyfortheABptotonsatothe 

sulfoxide groups ‘. It must be pointed out that the diketudisulfoxide 3 must be added to the DIBAL 

solution (nverse addition) Y 

The stereochemistry ofthe hydroxylii anters was egected to be (S,S) from our prewe&g results 3 

and confinned by desubization to the known (r/R) 2,5-hexaue dial l4 zc 

ZnBr2/DIBAL reduction of 3 a&&d similarly ouIy the other diastereomer 4 as the unique product 7 

which after desulfkmtion with Rmey Nickel lead to the known (S,S) 2.5~hexane diol Ia, 2b4. 
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Scheme I 

3,8Q% ykld 
[a]f +299 (04, Cl+Cs) 

mp = 139-4O’C 
1 

2.5 eq. -78-C 
1 

DIBAL. THF 

r, 75% yield. de>9!5% 
[aID= +253 (WO.2, Cl-K+) 
mpl14Q130°C 

b,75% yield. de>95% 
[aID= +241 (W 1, CHCl3) 
mp = 201-2-C 

1 
Raney Ni 1 Raney Nl 

The same methodology could not be used to prepare optically pure 2,6_heptane diol because it was 

impossible to synthesize the correspouding diketodisul5oxide t?om methyl glutarate. The reaction of 

this diester with 2 equivalents of(+)-(R) methyl p-tolylsulfoxide auion gave mainly cyclized products 

in this strongly basic medium. Therefore the synthetic approach was modified to a multi step process : 

introduction of a first ketostioxide functionality from glut&c aubydride, reduction of the carbox@, 

dcs&uization and iutroduction of the second ketosuEoxide moiety. 

‘The synthesis of the ketosulfoxide 6 was already repoti for the enantioselective reduction of 

zearalcnone *. Redwtion of the ketosulfoxide 6 witb DIBAL gave the ~hydroxysulfoxide 7 with an S 

co&&m&ion at then hydroxylio center 3 (d.e > 934, deduced from the NMR spectrum ’ ) (scheme II). 

The (R) hydroxyester 8 was obtained by protecting the OH group with a TBS group followed by 

&sulfurization. (R)-8 was l5nally reacted with (+)(R) methyl ptolylsulfoxide and tbe resulting 

ketosuEoxi& 9 reduced with DIBAL (d-e > 9%~ determined by Nh4R lo ), &protected with TBAF 

and &sulfurized to give (I/R)-2,6-heptane dio12. 
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SchemelI 

6. [aID* +lQ5 

9, Q-yield 
[aID m +I12 (cd .l, cl++) 

1 DIBAL 

l&81% yield, deQ5%, mp40-4l’C 
b)D = l 151 (W.88,CHCls) 

DIBM 

7.70% yklkl, -95% 
[a]D = +232, (~0.03. CHCl3) 
mp 80-82W 

R 
77% 1) TBSCI. Im. 

1 2) Raney Ni 
Pldj~>S,Me 

R 
OTBS 
= 

(R), 8, & = -15 (ctl .5,CHC13) 

70% 

(S,S) 2.6-heptane dio12 was obtained by a very similar route. The reduction with ZnE3r2iDIBAL of 
the ketosulfoxide 6 and subsequent transformation to (+) methyl (5S> [tert-butyldimethylsilyl) oxy] 

hexrrmurtell(schemem)wasahreadydtscribcd*.Theesterllwasthmallowedtortactwith(+)- 
(R) methyl p-tolyl stdfoxide anion to give the ketosulfoxide 12 in 94O/o yield, which was then reduced 

with ZnQ/DIBAL to the hydroxysulfoxide 13 ( with the (R) configuration at the new hydroxylic 

center3 , d.e > 95%, determined by NMR l1 ). Finally (S,S)-2,Ghepcane diol 2 ~8s obtained by 

removing the protmkg group followed by -on. 
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